Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization

Circulation. 2004 May 25;109(20):2454-61. doi: 10.1161/01.CIR.0000128213.96779.61. Epub 2004 May 17.

Abstract

Background: Stromal cell-derived factor-1alpha (SDF-1alpha) is implicated as a chemokine for endothelial progenitor cells (EPCs). We therefore hypothesized that SDF-1alpha gene transfer would induce therapeutic neovascularization in vivo by functioning as a chemokine of EPC.

Methods and results: To examine SDF-1alpha-induced mobilization of EPC, we used bone marrow-transplanted mice whose blood cells ubiquitously express beta-galactosidase (LacZ). We produced unilateral hindlimb ischemia in the mice and transfected them with plasmid DNA encoding SDF-1alpha or empty plasmids into the ischemic muscles. SDF-1alpha gene transfer mobilized EPCs into the peripheral blood, augmented recovery of blood perfusion to the ischemic limb, and increased capillary density associated with partial incorporation of LacZ-positive cells into the capillaries of the ischemic limb, suggesting that SDF-1alpha induced vasculogenesis and angiogenesis. SDF-1alpha gene transfer did not affect ischemia-induced expression of vascular endothelial growth factor (VEGF) but did enhance Akt and endothelial nitric oxide synthase (eNOS) activity. Blockade of VEGF or NOS prevented all such SDF-1alpha-induced effects.

Conclusions: SDF-1alpha gene transfer enhanced ischemia-induced vasculogenesis and angiogenesis in vivo through a VEGF/eNOS-related pathway. This strategy might become a novel chemokine therapy for next generation therapeutic neovascularization.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Marrow Cells / cytology
  • Bone Marrow Transplantation
  • Capillaries / growth & development
  • Chemokine CXCL12
  • Chemokines, CXC / genetics*
  • Chemotaxis
  • Endothelium, Vascular / cytology
  • Genetic Therapy*
  • Hindlimb / blood supply
  • Ischemia / metabolism
  • Ischemia / therapy*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neovascularization, Physiologic*
  • Nitric Oxide Synthase / genetics
  • Nitric Oxide Synthase / metabolism*
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Protein Serine-Threonine Kinases / metabolism
  • Proto-Oncogene Proteins / metabolism
  • Proto-Oncogene Proteins c-akt
  • Signal Transduction
  • Stem Cells / physiology
  • Transfection
  • Vascular Endothelial Growth Factor A / metabolism*

Substances

  • Chemokine CXCL12
  • Chemokines, CXC
  • Cxcl12 protein, mouse
  • Proto-Oncogene Proteins
  • Vascular Endothelial Growth Factor A
  • Nitric Oxide Synthase
  • Nitric Oxide Synthase Type II
  • Nitric Oxide Synthase Type III
  • Nos3 protein, mouse
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt