The availability of large numbers of genomic sequences has demonstrated the importance of lateral gene transfer (LGT) in prokaryotic evolution. However, considerable uncertainty remains concerning the frequency of LGT compared to other evolutionary processes. To examine LGTs in ancient lineages of prokaryotes a method was developed that utilizes the ratios of evolutionary distances (RED) to distinguish between alternative evolutionary histories. The advantages of this approach are that the variability inherent in comparing protein sequences is transparent, the direction of LGT and the relative rates of evolution are readily identified, and it is possible to detect other types of evolutionary events. This method was standardized using 35 genes encoding ribosomal proteins that were believed to share a vertical evolution. Using RED-T, an original computer program designed to implement the RED method, the evolution of the genes encoding the 20 aminoacyl-tRNA synthetases was examined. Although LGTs were common in the evolution of the aminoacyl-tRNA synthetases, they were not sufficient to obscure the organismal phylogeny. Moreover, much of the apparent complexity of the gene tree was consistent with the formation of the paralogs in the ancestors to the modern lineages followed by more recent loss of one paralog or the other.