A more fundamental understanding about the act of manual lifting can be provided by the assessment of the total production of power and the power generated in joints. The present study is concerned with the validity of the estimations of these parameters. Four subjects lifted an 18.8 kg load while they were filmed and ground reaction forces were measured. The total generated power was calculated in three ways: (1) by summation of joint powers, (2) on the basis of the rate of change of the summed energy contents of human body segments, and (3) on the basis of the rate of change of the body energy estimated from ground reaction forces. The results were compared. Furthermore, at a segmental level the power supplied to or absorbed from a segment was compared to the rate of change of its energy content. The resulting instantaneous power curves from the three different methods showed a high level of agreement, which supports their validity. However, some minor discrepancies were observed. The major cause of the observed difference between the rate of change of the summed segmental energy contents and the summed joint powers was found at a segmental level. It was observed that segmental link lengths (i.e. distances between proximal and distal markers) changed during movement, which yielded discrepancies between the power flow to or from a segment and the rate of change of its energy content.