An ever increasing number of patients with neurodegenerative disorders calls for the evaluation of potential diagnostic markers that allow an early diagnosis and an early initiation of specific therapy. Clinical diagnosis of Alzheimer's disease (AD), the most common neurodegenerative disorder, reaches 80-90% accuracy upon autopsy in specialized clinical centers. Diagnosis of AD in early clinical or preclinical stages is far less accurate, as is the differential diagnosis between AD and other primary dementias, such as frontotemporal dementia (FTD). Microtubule-associated tau protein is abnormally phosphorylated in AD and aggregates as paired helical filaments in neurofibrillary tangles. Recently, immunoassays have been developed detecting tau phosphorylated at specific epitopes in cerebrospinal fluid (CSF). Four years of clinical research consistently demonstrate that CSF phosphorylated tau (p-tau) is highly increased in AD compared to healthy controls and may differentiate AD from its most relevant differential diagnoses. Tau phosphorylated at threonine 231 (p-tau(231)) shows excellent differentiation between AD and FTD, whereas serine 181 (p-tau(181)) enhances accurate differentiation between AD and dementia with Lewy bodies. Moreover, p-tau(231) levels decline with disease progression, correlating with cognitive performance at baseline. Total tau (t-tau) is regarded as a general marker of neurodegeneration for evaluation in future population-based studies. p-tau(231) and p-tau(181) yield excellent discrimination between AD and non-AD dementias including FTD, exceeding the differential diagnostic and prognostic accuracy of t-tau. Therefore, p-tau is a core biological marker candidate for future evaluation in large national and international multicenter networks.
Copyright 2004 S. Karger AG, Basel