Previously, we demonstrated that the organochlorine pesticide dieldrin induces mitochondrial depolarization, caspase-3 activation and apoptosis in dopaminergic PC12 cells. We also demonstrated that protein kinase Cdelta (PKCdelta), a member of a novel PKC family of proteins, is proteolytically activated by caspase-3 to mediate apoptotic cell death processes. In the present study, we have further characterized the protective effect of the major mitochondrial anti-apoptotic protein Bcl-2 against dieldrin-induced apoptotic events in dopaminergic cells. Exposure to dieldrin (30-100 microM) produced significant cytotoxicity and caspase-3 activation within 3h in vector-transfected PC12 cells, whereas human Bcl-2-transfected PC12 cells were almost completely resistant to dieldrin-induced cytotoxicity and caspase-3 activation. Also, dieldrin (30-300 microM) treatment induced proteolytic cleavage of poly(ADP-ribose) polymerase (PARP), which was blocked by pretreatment with caspase-3 inhibitors Z-DEVD-FMK and Z-VAD-FMK. Additionally, dieldrin-induced chromatin condensation and DNA fragmentation were completely blocked in Bcl-2-overexpressed PC12 cells as compared to vector control cells. Together, these results clearly indicate that overexpression of mitochondrial anti-apoptotic protein protects against dieldrin-induced apoptotic cell death and further suggest that dieldrin primarily alters mitochondrial function to initiate apoptotic cell death in dopaminergic cells.