Effector T lymphocyte responses are considered critical for controlling human immunodeficiency virus type-1 (HIV-1) infection. The enzyme-linked immunospot (ELISpot) assay has emerged as a primary means of assessing HIV-specific T cell responses, and the development of objective methods that distinguish positive and negative ELISpot responses while properly controlling the rate of false positives is critical. In this paper, we consider several statistical methods that are helpful in defining such a positive criterion. Simulation results under a variety of scenarios suggest that a permutation-based criterion using a resampling adjustment for multiple comparisons yields the desired false positive rate while remaining competitive with other potential criteria in terms of sensitivity. These results also provide guidance on the effect of the number of experimental and negative control replicate wells on assay sensitivity. Application of different potential positive criteria using ELISpot assay results from IFN-gamma-secreting T cells of HIV-1 seropositive and seronegative donors confirmed several of the results obtained under simulation. Our findings support the application of statistically-based positive criteria such as the permutation-based resampling approach in assessing HIV vaccine-induced T cell responses. Moreover, the proposed methods have potential utility in related HIV immunopathogenesis studies and in non-HIV clinical vaccine trials.
Copyright 2004 Elsevier B.V.