Hepatitis B virus (HBV) core promoter contains a binding site for nuclear receptors. A natural double mutation in this binding site, which changes nucleotide (nt) 1765 from A to T and nt 1767 from G to A, selectively abolishes the binding of several nuclear receptors without affecting that of HNF4. This double mutation also creates a binding site for the transcription factor HNF1 and changes two amino acids in the overlapping X protein sequence. In this study, we have examined the roles of HNF1, HNF4, and the X protein in the regulation of the core promoter activities in Huh7 hepatoma cells. Our results indicate that HNF4 could stimulate the expression of the precore RNA and the core RNA from the core promoter of both the wild-type (WT) HBV and the double mutant, although its effect on the former was more prominent. In contrast, HNF1, which did not affect the WT core promoter, suppressed the precore RNA expression of the double mutant. Further analysis using HBV genomic constructs, with and without the ability to express the X protein, indicates that the X protein did not affect the HNF4 activity on the core promoter and affected the HNF1 activity on the core promoter of only the double mutant. Thus, our results indicate that the phenotypic differences of HBV WT and double-mutant core promoters are at least partially due to the differential activities of HNF1, HNF4, and the X protein on these two promoters.