How and when the vertebrate endoderm is first subdivided into discrete progenitor cell populations that will give rise to the different major organs, including pancreas and liver, are only poorly understood. We have used Xenopus laevis as a model system to characterize these events, since it is particularly suited to study the early embryonic patterning in vertebrates. Our experimental results support the notion that retinoic acid (RA) functions as an essential endodermal patterning signal in Xenopus and that it acts as early as during gastrulation. As a result of RA treatment, the expression of Sonic Hedgehog (Shh), a known inhibitor of pancreas development in other vertebrate systems, is negatively regulated in the dorsal prepancreatic endoderm. Furthermore, RA is found to promote endocrine at the expense of exocrine differentiation in the dorsal pancreas, correlating with a specific inhibition of Notch signaling activities in this territory. Conversely, RA enhances exocrine marker gene expression in the ventral pancreas.