The serine protease urokinase-type plasminogen activator (u-PA) is involved in a variety of physiologic and pathological processes; in particular, u-PA mRNA is up-regulated in human hepatocellular carcinoma (HCC) biopsies and its level of expression is inversely correlated with patients' survival. To determine the role of u-PA in the invasiveness properties of HCC, we successfully down-regulated u-PA by RNA interference (RNAi) technology, in an HCC-derived cell line at high level of u-PA expression. RNAi is a multistep process involving generation of small interfering RNAs (siRNA) that cause specific inhibition of the target gene. SKHep1C3 cells were transfected with a U6 promoter plasmid coding for an RNA composed of two identical 19-nucleotide sequence motifs in an inverted orientation, separated by a 9-bp spacer to form a hairpin dsRNA capable of mediating target u-PA inhibition. Stable transfectant cells showed a consistently decreased level of u-PA protein. In biological assays, siRNA u-PA-transfected cells showed a reduction of migration, invasion, and proliferation. In conclusion, u-PA down-regulation by RNAi technology decreases the invasive capability of HCC cells, demonstrating that stable expression of siRNA u-PA could potentially be an experimental approach for HCC gene therapy.