Disposable poly(methylmethacrylate) (PMMA) sheathless electrospray microchip emitters were prepared for the first time using the atmospheric molding fabrication protocol. A sheathless electrospray from uncoated channel outlets, machined to cone-shaped three-dimensional tips, is demonstrated utilizing a simple cross design with an on-chip liquid junction to obviate the need for external unions to voltage electrodes, thus reducing the dead volume effects as well as the complexity of fabrication. The fast replication of microchip emitters was performed by molding prepolymeric methylmethacrylate solutions into silicon-master/aluminum-spacer/glass-plate molds followed by UV-initiated free radical polymerization. The performance of the new microchip emitters was demonstrated for mass spectral measurements of methionine enkephalin, adrenocorticotropic hormone and insulin peptide/protein mixtures. The samples were infused through capillary connections using hydrodynamic pumping. The polymeric emitters prepared by this flexible fabrication route offer an easy way of operation and high stability, without a need for attachment of external voltage unions or metallizing the emitter tips. The new approach should provide a useful low-cost tool for widespread coupling of mass spectrometry to chip systems.
Copyright 2004 John Wiley & Sons, Ltd.