Extracellular protein deposition correlates with glial activation and oxidative stress in Creutzfeldt-Jakob and Alzheimer's disease

Acta Neuropathol. 2004 Sep;108(3):194-200. doi: 10.1007/s00401-004-0879-2. Epub 2004 Jun 19.

Abstract

The relation of protein deposition with glial cells and oxidative stress was studied in Creutzfeldt-Jakob disease (CJD), Alzheimer's disease (AD) and neurologically healthy control patients. Three neocortical areas, the hippocampus, and the cerebellum of 20 CJD, 10 AD and 10 control patients were immunohistochemically examined for the presence of astroglia, microglia, and protein depositions. To investigate the level of oxidative stress the percentage of neurons with cytoplasmic hydroxylated DNA was determined. Astroglia, microglia and oxidative stress were located around amyloid-beta depositions and a clear quantitative relation was identified. These markers were only increased in the hippocampus of AD compared to controls. Quantitative analysis in these groups showed a correlation between the oxidative stress level and the number of microglia in the grey matter. All markers were increased in the grey matter and the cerebellum of CJD when compared to AD and controls. The highest numbers of lesions were observed in a CJD population with a rapid disease progression. Quantitative analysis showed a correlation between the oxidative stress level and all glial cells. Further analysis showed that the number of microglia was related to the intensity of the prion depositions. Glial cells in the brain are thought to be the main producers of oxidative stress, resulting in neuronal death. Our results confirm that this close relationship exists in both AD and CJD. We also show that an increased number of glial cells and therefore possibly oxidative stress is associated with the disease progression.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease / metabolism
  • Alzheimer Disease / pathology*
  • Amyloid beta-Peptides / metabolism*
  • Brain / metabolism
  • Brain / pathology
  • Creutzfeldt-Jakob Syndrome / metabolism
  • Creutzfeldt-Jakob Syndrome / pathology*
  • DNA / metabolism
  • Extracellular Space / metabolism
  • Humans
  • Hydroxylation
  • Immunohistochemistry
  • Neuroglia / metabolism*
  • Neurons / metabolism
  • Neurons / pathology*
  • Oxidative Stress / physiology*
  • Plaque, Amyloid
  • Prions / metabolism

Substances

  • Amyloid beta-Peptides
  • Prions
  • DNA