Enhanced in vitro invasiveness and drug resistance with altered gene expression patterns in a human lung carcinoma cell line after pulse selection with anticancer drugs

Int J Cancer. 2004 Sep 10;111(4):484-93. doi: 10.1002/ijc.20230.

Abstract

The human lung carcinoma cell line DLKP was exposed to sequential pulses of 10 commonly used chemotherapeutic drugs (VP-16, vincristine, taxotere, mitoxantrone, 5-fluorouracil, methotrexate, CCNU, BCNU, cisplatin and chlorambucil); resulting cell lines exhibited resistance to the selecting agents (ranging approx. 1.5- to 36-fold) and, in some cases, cross-resistance to methotrexate (approx. 1.4- to 22-fold), vincristine (1.6- to 262-fold), doxorubicin (Adriamycin, approx. 1.1- to 33-fold) and taxotere (approx. 1.1- to 36-fold). Several of the variants displayed collateral sensitivity to cisplatin. A marked increase in in vitro invasiveness and motility was observed with variants pulsed with mitoxantrone, 5-fluorouracil, methotrexate, BCNU, cisplatin and chlorambucil. There was no significant change in invasiveness of cells pulsed with VP-16, vincristine, taxotere or CCNU. All of the pulse-selected variants showed elevated levels of MDR-1/P-gp protein by Western blot analysis, although mdr-1 mRNA levels were not increased (except for DLKP-taxotere). In DLKP-taxotere, MRP1 protein levels were also greatly elevated, but mrp1 mRNA levels remained unchanged. BCRP was upregulated in DLKP-mitoxantrone at both the mRNA and protein levels. Gelatin zymography, Western blot and RT-PCR showed that DLKP and its variants secreted MMPs 2, 9 and 13. MMP inhibition assays suggested that MMP-2 plays a more important role than MMPs 9 and 13 in cell invasion of these DLKP drug-resistant variants in vitro. These results indicate that drug exposure may induce not only resistance but also invasiveness in cancer cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / administration & dosage*
  • Antineoplastic Agents / pharmacology*
  • Blotting, Western
  • Carcinoma, Non-Small-Cell Lung / genetics*
  • Carcinoma, Non-Small-Cell Lung / pathology*
  • Carcinoma, Squamous Cell / genetics*
  • Carcinoma, Squamous Cell / pathology*
  • Cell Movement
  • Drug Administration Schedule
  • Drug Resistance, Neoplasm
  • Gene Expression Profiling
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Lung Neoplasms / genetics*
  • Lung Neoplasms / pathology*
  • Neoplasm Invasiveness*
  • Reverse Transcriptase Polymerase Chain Reaction
  • Tumor Cells, Cultured*

Substances

  • Antineoplastic Agents