The occurrence of yeast microflora in artisanal Fiore Sardo cheese during ripening was studied. Mean yeast counts ranged from 2.64+/-1 log(10) cfu ml(-1) in milk to 0.65+/-1 log(10) cfu g(-1) in 9 months cheese, with the higher counts observed in 48-h-old cheese. Strains belonging to the prevalent species Debaryomyces hansenii, Kluyveromyces lactis, Geotrichum candidum, Candida zeylanoides and Candida lambica were selected for technological and genotypic characterization. All D. hansenii strains fermented glucose and assimilated lactate, a high percentage assimilated citrate and only a few showed proteolytic and lipolytic activity. All K. lactis strains were able to both assimilate and ferment lactose, to assimilate lactate and to exhibit proteolytic activity on casein. G. candidum assimilated lactate and some strains showed proteolytic and lipolytic activity. C. zeylanoides showed lipolytic activity on tweens and the majority of strains assimilated citrate. C. lambica fermented glucose and assimilated lactate. Considering their diffusion and technological characteristics, an important role for K. lactis and G. candidum in the early stages of the ripening process and for D. hansenii after the first month of ripening can be suggested. RAPD-PCR analysis with M13 primer grouped the isolates in well-separated clusters with their type strains and confirmed the previous phenotypic identification. The high intraspecific homogeneity observed in tested strains could be explained by their isolation from a common substrate and from neighbouring geographical areas. This preliminary study allowed us to isolate autochthon yeast strains showing particular properties which can contribute to the production of typical cheese taste and flavour.