Abundant evidence supports the hypothesis that cancer arises from normal cells through the stepwise accumulation of genetic mutations. The study of cells obtained from patients with cancer has identified numerous molecules and pathways that fundamentally contribute to malignant transformation; however, cancer cell lines are often difficult to isolate or maintain, and the cell lines that are available for experimentation represent only a small subset of late-stage human cancers. Recent work has elucidated the role of telomerase in regulating human cell lifespan and has enabled the development of new experimental systems to study human cancer. This review highlights the recent progress in combining genetic methods and primary human cells to understand the role of specific genes and pathways in cancer pathogenesis.