Comparative genomic hybridization (CGH) has already made a significant impact on cancer cytogenetics. However, CGH to metaphase chromosomes can provide only limited resolution at the 5-10 Mb level. To circumvent this limitation, array-based CGH has been devised. Since spotted DNAs in a CGH-array contain sequence information directly connected with the genome database, we can easily note particular biological aspects of genes that lie within regions involved in copy-number aberrations. High-density, sub-megabase arrays can reveal nonrandom chromosome copy-number aberrations responsible for neoplastic transformation that have been masked under complex karyotypes in epithelial solid tumors. High-density CGH-array therefore paves the way for identification of disease-related genetic aberrations that have not yet been detected by existing technologies, and array-based CGH technology should soon be practical for diagnosis of cancer or genetic diseases in the clinical setting.