Cannabinoids (CB) can act as retrograde synaptic mediators of depolarization-induced suppression of inhibition or excitation in hippocampus. This mechanism may underlie the impairment of some cognitive processes produced by these compounds, including short-term memory formation in the hippocampus. In this study, we investigated several compounds known to interact with CB receptors, evaluating their effects on K(+)-evoked release of [3H]D-aspartate ([3H]D-ASP) and [3H]GABA from superfused synaptosomes isolated from the rat hippocampus. [3H]D-ASP and [3H]GABA release were inhibited to different degrees by the synthetic cannabinoids WIN 55,212-2; CP 55,940, and arachidonyl-2'-chloroethylamide/N-(2-chloroethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (ACEA), as well as by the endocannabinoids, anandamide (AEA), and 2-arachidonoylglycerol (2-AG). Both types of release were also inhibited by capsaicin. The inhibition produced by each of the cannabinoid compounds and capsaicin was unaffected by capsazepine or by the CB1-receptor antagonists AM-251 and SR141716A. The mechanism underlying AEA- and synthetic CB-induced inhibition of the release of [3H]GABA and [3H]D-ASP from rat hippocampal synaptosomes might not involve activation of presynaptic CB1 receptors.