Calculations using the multichannel Schwinger configuration-interaction method are presented for the photoionization from the ground and the first excited states of the C(2) molecule. Both single channel and multichannel calculations are presented in a photon energy range from the threshold to about 50 eV of photon energy. For the ground state, inclusion of both intrinsic and dynamical correlation effects is seen to strongly alter the picture of the photoionization process inferred from single-channel frozen-core Hartree-Fock calculations. Furthermore, the photoionization study of the first excited state of molecular carbon has revealed the presence of strong interchannel coupling between the 3sigma(g)-->ksigma(u) channel and the photoionization channels leading to the A (4)Pi(g) and f (2)Pi(g) ionic states in the near threshold region.