A reduced dimensionality quasiclassical and quantum study of the proton transfer reaction H3O(+)+H2O-->H2O+H3O(+)

J Chem Phys. 2004 Apr 15;120(15):7018-23. doi: 10.1063/1.1668637.

Abstract

We report quantum and quasiclassical calculations of proton transfer in the reaction H(3)O(+)+H(2)O in three degrees of freedom, the two OH(+) bond lengths and the OH(+)O angle. The reduced dimensional potential energy surface is obtained from the full dimensional OSS3(p) energy function of H(5)O(2) (+) [L. Ojamae, I. Shavitt, and S. J. Singer, J. Chem. Phys. 109, 5547 (1998)], with an additional long-range correction to reproduce the correct ion-molecule interaction. This surface is used to perform both quasiclassical trajectory and quantum reactive scattering calculations of the zero total angular momentum cumulative reaction probability and cross sections for initial rotational states 0, 1, and 2. Comparison of these quantities are made to assess the importance of quantum effects in this reduced dimensional reaction. Additional quasiclassical cross sections are calculated to obtain the thermal rate constant for the reaction.