Registration of cortical structures across individuals is a very important step for quantitative analysis of the human brain cortex. This paper presents a method for deformable registration of cortical structures across individuals, using hybrid volumetric and surface warping. In the first step, a feature-based volumetric registration algorithm is used to warp a model cortical surface to the individual's space. This step greatly reduces the variation between the model and individual, thus providing a good initialization for the next step of surface warping. In the second step, a surface registration method, based on matching geometric attributes, warps the model surface to the individual. Point correspondences are also established at this step. The attribute vector, as the morphological signature of surface, was designed to be as distinctive as possible, so that each vertex on the model surface can find its correspondence on the individual surface. Experimental results on both synthesized and real brain data demonstrate the performance of the proposed method in the registration of cortical structures across individuals.