In order to improve the management of transformed populations in a routine application of transgenesis technology in Bombyx mori, we modified its mode of reproduction and its voltinism. On one hand, after a stable integration of the gene of interest by transgenesis, it is preferable to maintain this gene in an identical genomic context through successive generations. This can be obtained by artificial parthenogenetic reproduction (ameiotic parthenogenesis) giving isogenic females identical to their transformed mother. On the other hand, it is essential to obtain continuous generations (polyvoltinism) after microinjection, in order to screen positive transgenic insects and study genetics and insertion of the transgene. Thereafter, it is more convenient to store these populations, as diapause eggs before their use in biotechnology application. We obtained such polyvoltine parthenoclones, first by selection for a parthenogenetic character in polyvoltine races, and second, by selection for a polyvoltine character in a parthenogenetic, but diapausing clone of B. mori. As diapause was directly under the control of diapause hormone (DH), we also tested direct injection of DH in female pupae of polyvoltine strains, as well as anti-DH antibody treatment to eliminate diapause in univoltine strains. We discussed the advantages and limitations of these methods and proved the feasibility in obtaining polyvoltine parthenoclones and determining the voltinism in B. mori. These methods would permit us to improve the management of populations used in transgenesis technology.