Archaeopteryx, the earliest known flying bird (avialan) from the Late Jurassic period, exhibits many shared primitive characters with more basal coelurosaurian dinosaurs (the clade including all theropods more bird-like than Allosaurus), such as teeth, a long bony tail and pinnate feathers. However, Archaeopteryx possessed asymmetrical flight feathers on its wings and tail, together with a wing feather arrangement shared with modern birds. This suggests some degree of powered flight capability but, until now, little was understood about the extent to which its brain and special senses were adapted for flight. We investigated this problem by computed tomography scanning and three-dimensional reconstruction of the braincase of the London specimen of Archaeopteryx. Here we show the reconstruction of the braincase from which we derived endocasts of the brain and inner ear. These suggest that Archaeopteryx closely resembled modern birds in the dominance of the sense of vision and in the possession of expanded auditory and spatial sensory perception in the ear. We conclude that Archaeopteryx had acquired the derived neurological and structural adaptations necessary for flight. An enlarged forebrain suggests that it had also developed enhanced somatosensory integration with these special senses demanded by a lifestyle involving flying ability.