Myosin Va is an actin-based motor molecule, one of a large family of unconventional myosins. In humans, mutations in MYO5A cause Griscelli syndrome type 1 and Elejalde syndrome, diseases characterized by pigmentation defects and the prepubescent onset of severe neurological deficits that ultimately lead to a shortened lifespan. Mutations in the Myo5a gene in mouse cause the dilute series of mouse mutants, demonstrating that myosin Va is involved in pigmentation and neural function. Although the reason for the pigmentation abnormalities is well understood, the role of myosin Va in neural function is not. Myosin Va has been found in synaptic terminals in the retina and brain. We report here new physiological evidence for a role of myosin Va in synaptic function. Photoreceptor synapses in neurologically affected myosin Va mutant mice have both anatomical and physiological abnormalities. Thus, myosin Va is required for normal photoreceptor signalling, suggesting that it might function in central nervous system synapses in general, with aberrant synaptic activity potentially underlying the neurological defects observed in dilute lethal mice and patients with Griscelli syndrome type 1 and Elejalde syndrome.