Glycosylation influences the biological activity of proteins and affects their folding and stability. Because aberrant glycosylation is associated with Alzheimer's disease (AD), we applied proteome analysis together with Pro-Q Emerald 300 glycoprotein staining to investigate changes in glycosylated cytosolic proteins in AD and control brain. Frontal cortex proteins from 10 AD patients and 7 non-demented controls were subjected to separation by two-dimensional gel electrophoresis and subsequently stained with carbohydrate-specific Pro-Q Emerald 300 dye. Changes in glycosylation of separated proteins were quantified, and proteins of interest identified by mass spectrometry. Approximately 30% of all detectable proteins in the human frontal cortex appeared glycosylated, including heat shock cognate 71 stress protein and beta isoform of creatine kinase. The glycosylation of collapsin response mediator protein 2 (CRMP-2) and an unknown protein was reduced in AD, while the glycosylation of glial fibrillary acidic protein was increased. CRMP-2 regulates the assembly and polymerization of microtubules and is associated with neurofibrillary tangles in AD. Aberrant glycosylations in AD may help understand the mechanisms of neurodegenerative diseases.