Background and objectives: Lasers are used for several procedures involving hard and soft tissues of the oral cavity. A potential future application is the use of the CO2 laser to alter the surface structure of tooth enamel to render it more resistant to caries. A new 9.6 microm wavelength transverse excited atmospheric pressure (TEA) CO2 laser (Argus Photonics, Jupiter, FL) has been investigated as a device that can be used for this purpose without harming the dental pulp.
Study design/materials and methods: Erupted caries- and restoration-free third molars (n = 24 participants; 74 teeth) were used in the study. Teeth were irradiated at an incident fluence of 1.5 J/cm2, a repetition rate of 10 Hz and a spot size 1 mm in diameter. At the low and high settings, 200-400 pulses at 5-8 microseconds pulse duration were delivered at 12 mJ per pulse for a total energy of 2.4 or 4.8 J delivered for 20 or 40 seconds, respectively. Other teeth were subjected to a sham dental procedure (positive control) or no procedure (negative control). Prior to testing, radiographs were taken of all teeth, and they were assessed pulpally using heat, cold, and electricity to determine vitality. The teeth were removed either immediately or at 1 week or 1 month after testing.
Results: Teeth were bioprepared and examined histologically for signs of inflammation. Only one tooth developed symptoms of sensitivity to cold for 10 days following exposure to the high power level. The sensitivity was of fleeting duration and was judged to be reversible pulpitis. All teeth tested responded normally at pre-testing and pre-extraction time periods. Histological examination of all teeth disclosed no indication of an inflammatory response in the pulp tissue at any time point. All sections appeared normal with no changes seen in the normal pulpal morphology.
Conclusions: We conclude that the 9.6 microm wavelength laser causes no permanent/serious pulpal damage at the energy levels used and can be used safely for caries prevention treatments in humans.