Hepatocyte growth factor (HGF) stimulates the migration of myogenic cells during the development of skeletal muscles. The inactivation of HGF genes or that of its receptor, c-met, in mice causes hypoplasia of skeletal muscle organs, such as the tongue. Basic fibroblast growth factor (FGF-2) also induces migration of skeletal myoblasts. A comparison of the functions of HGF and FGF-2 in myogenesis revealed the crucial effect of HGF in the development of skeletal muscles. Unlike FGF-2, HGF induced migration of myoblasts from the developing mouse tongue. The differences between the activities of HGF and FGF-2 were determined by comparing their effects on the expression of matrix metalloproteinase-9 (MMP-9) in myoblasts, C2C12 cells, cultured in collagen-coated dishes. The results showed that HGF, but not FGF-2, stimulated MMP-9 expression, and that the stimulation was mediated through the activation of phosphoinositide 3-kinase (PI3K) which was not associated with FGF-2 signal transduction. Nevertheless, both growth factors exerted almost the same effect on the reduction of myogenin expression in, and on the proliferation of, C2C12 cells, suggesting that HGF, rather than FGF-2, plays a crucial role in the generation of skeletal muscles, including the tongue. Moreover, the specific role of HGF through the PI3K signal pathway is the induction of MMP-9 expression in, and the migration of, myoblasts.
Copyright 2004 Wiley-Liss, Inc.