Although the atheroprotective role of HDL cholesterol (HDL-c) is well documented, effective therapeutics to selectively increase plasma HDL-c levels are not yet available. Recent progress in unraveling human HDL metabolism has fuelled the development of strategies to decrease the incidence and progression of coronary artery disease (CAD) by raising HDL-c. In this quest for novel drugs, cholesteryl ester transfer protein (CETP) represents a pivotal target. The role of this plasma protein in HDL metabolism is highlighted by the discovery that genetic CETP deficiency is the main cause of high HDL-c levels in Asian populations. The use of CETP inhibitors to effectively increase HDL-c concentration in humans was recently published and data with regard to the effect on human atherosclerosis are expected shortly. This review discusses the potential of CETP inhibitors to protect against atherosclerosis in the context of the current knowledge of CETP function in both rodents and humans.