Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media

Appl Opt. 2004 Aug 20;43(24):4677-84. doi: 10.1364/ao.43.004677.

Abstract

We introduce a robust method to recover optical absorption, reduced scattering, and single-scattering asymmetry coefficients (microa, micro's, g1) of infinite turbid media over a range of (micro's/microa) spanning 3 orders of magnitude. This is accomplished through the spatially resolved measurement of irradiance at source-detector separations spanning 0.25-8 transport mean free paths (l*). These measurements are rapidly processed by a multistaged nonlinear optimization algorithm in which the measured irradiances are compared with predictions given by the delta-P1 variant of the diffusion approximation to the Boltzmann transport equation. The ability of the delta-P1 model to accurately describe radiative transport within media of arbitrary albedo and on spatial scales comparable to l* is the key element enabling the separation of g1 from micro's.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Algorithms
  • Models, Theoretical*
  • Optics and Photonics*
  • Scattering, Radiation