We describe the discovery and characterization of ADAMTS10, a novel metalloprotease encoded by a locus on human chromosome 19 and mouse chromosome 17. ADAMTS10 has the typical modular organization of the ADAMTS family, with five thrombospondin type 1 repeats and a cysteine-rich PLAC (protease and lacunin) domain at the carboxyl terminus. Its domain organization and primary structure is similar to a novel long form of ADAMTS6. In contrast to many ADAMTS proteases, ADAMTS10 is widely expressed in adult tissues and throughout mouse embryo development. In situ hybridization analysis showed widespread expression of Adamts10 in the mouse embryo until 12.5 days of gestation, after which it is then expressed in a more restricted fashion, with especially strong expression in developing lung, bone, and craniofacial region. Mesenchymal, not epithelial, expression in the developing lung, kidney, gonad, salivary gland, and gastrointestinal tract is a consistent feature of Adamts10 regulation. N-terminal sequencing and treatment with decanoyl-Arg-Val-Lys-Arg-chloromethylketone indicate that the ADAMTS10 zymogen is processed by a subtilisin-like proprotein convertase at two sites (Arg64/Gly and Arg233/Ser). The widespread expression of ADAMTS10 suggests that furin, a ubiquitously expressed proprotein convertase, is the likely processing enzyme. ADAMTS10 expressed in HEK293F and COS-1 cells is N-glycosylated and is secreted into the medium, as well as sequestered at the cell surface and extracellular matrix, as demonstrated by cell surface biotinylation and immunolocalization in nonpermeabilized cells. ADAMTS10 is a functional metalloprotease as demonstrated by cleavage of alpha2-macroglobulin, although physiological substrates are presently unknown.