A new quantitative cysteinyl-peptide enrichment technology (QCET) was developed to achieve higher efficiency, greater dynamic range, and higher throughput in quantitative proteomics that use stable-isotope labeling techniques combined with high-resolution liquid chromatography (LC)-mass spectrometry (MS). This approach involves (18)O labeling of tryptic peptides, high-efficiency enrichment of cysteine-containing peptides, and confident protein identification and quantification using the accurate mass and time tag strategy. Proteome profiling of naïve and in vitro-differentiated human mammary epithelial cells using QCET resulted in the identification and quantification of 603 proteins in a single LC-Fourier transform ion cyclotron resonance MS analysis. Advantages of this technology include the following: (1) a simple, highly efficient method for enriching cysteinyl-peptides; (2) a high-throughput strategy suitable for extensive proteome analysis; and (3) improved labeling efficiency for better quantitative measurements. This technology enhances both the functional analysis of biological systems and the detection of potential clinical biomarkers.