Signalling pathways in the nitric oxide donor-induced dopamine release in the striatum of freely moving rats: evidence that exogenous nitric oxide promotes Ca2+ entry through store-operated channels

Brain Res. 2004 Oct 15;1023(2):243-52. doi: 10.1016/j.brainres.2004.07.040.

Abstract

We showed previously, using in vitro microdialysis, that the activation of the soluble guanylate cyclase (sGC)/cyclic GMP pathway was the underlying mechanism of the extracellular Ca(2+)-dependent effects of exogenous NO on dopamine (DA) secretion from PC12 cells. In this study, the co-infusion of the sGC inhibitor 1H-[1,2,4]oxadiazolo[4,3] quinoxalin-1-one (ODQ) failed to affect the NO donor 3-morpholinosydnonimine (SIN-1, 5.0 mM)-induced DA increase (sevenfold baseline) in dialysates from the striatum of freely moving rats. Ca(2+) omission from the perfusion fluid abolished baseline DA release but did not affect SIN-1-induced DA increases. The reintroduction of Ca(2+) in the perfusion fluid restored the baseline dialysate DA; however, when Ca(2+) reintroduction was associated with the infusion of either SIN-1 or the NO-donor S-nitrosoglutathione (SNOG), a sustained DA overflow was observed. DA overflow was selectively inhibited by the co-infusion of the store-operated channel blocker 2-aminoethoxydiphenyl borate. The chelation of intracellular Ca(2+) by co-infusing 1,2-bis (o-amino-phenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxymethyl) ester (BAPTA-AM, 0.2 mM) greatly potentiated both SIN-1- and SNOG-induced increases in dialysate DA. BAPTA-AM-induced potentiation was inhibited by Ca(2+) omission. We conclude that the sGC/cyclic GMP pathway is not involved in the extracellular Ca(2+)-independent exogenous NO-induced striatal DA release; however, when intracellular Ca(2+) is either depleted (by Ca(2+) omission) or chelated (by BAPTA-AM co-infusion), exogenous NO does promote Ca(2+) entry, most likely through store-operated channels, with a consequent further increase in DA release.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Boron Compounds / pharmacology
  • Calcium / metabolism*
  • Chelating Agents / pharmacology
  • Chromatography, High Pressure Liquid / methods
  • Corpus Striatum / drug effects*
  • Corpus Striatum / metabolism
  • Dopamine / metabolism*
  • Drug Interactions
  • Egtazic Acid / analogs & derivatives*
  • Egtazic Acid / pharmacology
  • Electrochemistry / methods
  • Functional Laterality / drug effects
  • Male
  • Microdialysis / methods
  • Molsidomine / analogs & derivatives*
  • Molsidomine / metabolism
  • Molsidomine / pharmacology
  • Nitric Oxide / pharmacology*
  • Nitric Oxide Donors / pharmacology*
  • Quinoxalines / pharmacology
  • Rats
  • Rats, Wistar
  • S-Nitrosoglutathione / metabolism
  • S-Nitrosoglutathione / pharmacology
  • Signal Transduction / drug effects
  • Wakefulness / drug effects*

Substances

  • Boron Compounds
  • Chelating Agents
  • Nitric Oxide Donors
  • Quinoxalines
  • Nitric Oxide
  • Egtazic Acid
  • S-Nitrosoglutathione
  • linsidomine
  • Molsidomine
  • 2-aminoethoxydiphenyl borate
  • 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid
  • Calcium
  • Dopamine