The presence of surfactants in dried latex films can adversely affect the adhesive, water-resistant, and gloss properties, so investigating the surfactant distribution in latex coatings is of prime industrial relevance. Here we present a model that predicts the distribution of surfactant in a latex coating during the solvent evaporation stage. The conservation equation for surfactant during solvent evaporation is solved in the limit of infinite particle Peclet numbers, a dimensionless quantity giving the measure of relative magnitudes of evaporative to diffusive fluxes. A parametric analysis using the model reveals that the surfactant adsorption isotherm is the determining physical parameter. The model always predicts surfactant excesses at the top surface and either excess or depletion at the bottom surface depending on the isotherm. Uniform distributions are predicted for low surfactant Peclet numbers. Attenuated total reflection Fourier transform infrared spectroscopic probes on film surfaces conform to the behavior predicted by the model.