Respiratory syncytial virus (RSV) causes intense pulmonary inflammatory responses in some infected infants. The surface attachment protein 'G' of RSV has membrane-bound and secreted forms and shows homology to the CX3C chemokine fractalkine. Using recombinant techniques, we generated replication-competent recombinant clonal RSV expressing normal G proteins ('rRSV') or only the membrane-bound form of G ('Gmem rRSV'). Both recombinants grew well in HEp-2 cells, but after primary intranasal infection in mice, pulmonary Gmem rRSV replication was reduced tenfold compared to parental or rRSV; moreover, CCL2 and CCL5 production was greatly reduced and no apparent disease or pulmonary cellular infiltration was observed. However, Gmem rRSV-infected mice developed good antibody responses and were fully protected against subsequent intranasal challenge with parental virus. Even in mice sensitized to G by cutaneous infection with recombinant vaccinia expressing G, intranasal challenge with Gmem rRSV caused insignificant disease. We conclude that secreted G is a key viral product assisting virus replication in vivo, enhancing CCL2 and CCL5 production and promoting illness. Engineered RSV mutants lacking the ability to secrete G are thus promising vaccine candidates.