Great attention has been recently given to a flavonoid of the anthocyanin class, cyanidin-3-O-beta-glucopyranoside (C-3-G), which is widely spread throughout the plant kingdom, and is present in both fruits and vegetables of human diets. In this study, we investigated the effect of C-3-G on proliferation and differentiation of human melanoma cells. Both morphological and functional parameters were evaluated, using electron and confocal microscopy, cytofluorometric analysis, HPLC assay, Western blot analysis, and enzymatic assay, as appropriate. A treatment with a single dose of C-3-G decreased cell proliferation without affecting cell viability and without inducing apoptosis or necrosis. The mitotic index and cell percentage in S phase were significantly lower in C-3-G treated cells compared with untreated control. C-3-G treatment induced, in a dose- and time-dependent manner, melanoma cell differentiation characterized by a strong increase in dendrite outgrowth accompanied with a remodeling of the microtubular network, a dramatic increase of focal adhesion and an increased expression of "brain specific" cytoskeletal components such as NF-160 and NF-200 neurofilament proteins. C-3-G treatment also induced increase of cAMP levels and up-regulation of tyrosinase expression and activity resulting in an enhanced melanin synthesis and melanosome maturation. Up-regulation of the melanoma differentiation antigen Melan-A/MART-1 in treated cells respect to the untreated control was also recorded. Data obtained provide evidence that a single treatment with C-3-G is able to revert the human melanoma cells from the proliferating to the differentiated state. We conclude that C-3-G is a very promising molecule to include in the strategies for treatment of melanoma; also because of its nutritional relevance.