Synchronous effects of temperature, hydrostatic pressure, and salinity on growth, phospholipid profiles, and protein patterns of four Halomonas species isolated from deep-sea hydrothermal-vent and sea surface environments

Appl Environ Microbiol. 2004 Oct;70(10):6220-9. doi: 10.1128/AEM.70.10.6220-6229.2004.

Abstract

Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30 degrees C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30 degrees C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30 degrees C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30 degrees C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacterial Proteins / metabolism
  • Fatty Acids / analysis
  • Halomonas / growth & development*
  • Halomonas / metabolism*
  • Hydrostatic Pressure
  • Phospholipids / chemistry
  • Phospholipids / metabolism
  • Seawater / microbiology
  • Sodium Chloride
  • Species Specificity
  • Temperature

Substances

  • Bacterial Proteins
  • Fatty Acids
  • Phospholipids
  • Sodium Chloride