Multidimensional infrared spectroscopy of the N-H bond motions in formamide

J Chem Phys. 2004 Oct 15;121(15):7281-92. doi: 10.1063/1.1792612.

Abstract

The heterodyned two-dimensional (2D) IR spectra and equilibrium dynamics of the N-H stretching motion of DCONHD in deuterated formamide, DCOND(2), were studied with 80 fs pulses at 3 microm. The time evolution of the heterodyned 2D IR spectra, pump-probe spectra, and photon echo peak shift demonstrate that interstate dynamics is occurring by relaxation of the original N-H excitation. The N-H vibrational frequency correlation function can be expressed as a sum of three exponentials with correlation times 0.24 ps, 0.8 ps, and 11 ps. The intermediate component is attributed to motions of the N-Hcdots, three dots, centeredO unit involving only slight angular variations of the N-H bond. The slow component is attributed to the structure breaking and making. The anisotropy decay confirmed that the significant angular N-H bond motion occurs on the 11 ps time scale. The fast component, which is the least well determined, might correspond to the modulation of the H-bond distance without angular motion. The correlation coefficient between the pumped and relaxed state distributions was +0.51, implying that the excited state phase memory is only slightly diminished by the relaxation of the N-H excitation. The relaxed modes are concluded to be local to the driven N-H mode.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation*
  • Formamides / chemistry*
  • Hydrogen Bonding
  • Models, Chemical*
  • Spectrophotometry, Infrared

Substances

  • Formamides
  • formamide