Patients with end-stage renal disease are prone to hemorrhagic complications and simultaneously are at risk for a variety of thrombotic complications such as thrombosis of dialysis blood access, the subclavian vein, coronary arteries, cerebral vessel, and retinal veins, as well as priapism. The study was devised for the following purposes: (1) to identify the markers of thrombophilia in hemodialyzed patients, (2) to establish a role for antiphospholipid antibodies in thrombosis of the vascular access, (3) to characterize phospholipid antibodies in hemodialysis patients, and (4) to study the effects of dialysis on coagulation cascade. A group of 20 hemodialysis patients with no thrombotic complications (NTC) and 20 hemodialysis patients with thrombotic complications (TC) were studied along with 400 volunteer blood donors. Patients with systemic lupus erythematosus and those with nephrotic syndrome were excluded. All patients underwent a screening prothrombin time, activated partial thromboplastin time, fibrinogen (Fg), coagulation factors of the intrinsic and extrinsic pathways, antithrombin III (AT-III), protein C (PC), protein S (PS), resistance to activated protein C, prothrombin activation fragment 1+2 (F1+2), plasminogen, tissue type plasminogen activator (t-PA), plasminogen tissue activator inhibitor type-1 (PAI-1), anticardiolipin antibodies type M and G (ACA-IgM and ACA-IgG), lupus anticoagulant antibodies, and antiprothrombin antibodies type M and G (aPT-IgM and aPT-IgG). The study showed that PAI-1, F 1+2, factor VIII, ACA-IgM, and aPT-IgM levels were increased significantly over controls both in TC and NTC, however, they could distinguish patients with thrombotic complications from those without, being increased maximally in the former group. The novelty of the study is represented by the significant aPT increase that was observed in non-systemic lupus erythematosus hemodialysis patients, and particularly in those with thrombotic events. In addition, there was a reduction of factor XII during the treatment. It is possible to assume in the TC group and, to a lesser extent, also in the NTC group that endothelial cells liberate PAI-1 in the vascular lumen, which causes hypofibrinolysis. In addition, an excess of factor VIII is activated by endothelial dysfunction with subsequent activation of the coagulation cascade as shown by increased F1+2 and fibrinogen. ACA-IgM, in turn, is capable of interfering with the system of protein C, a potent anticoagulant factor that inactivates cofactors Va and VIIIa. They also induce the expression of procoagulant factors on the surface of the endothelial cells. In conclusion, the hypercoagulable state caused by alterations of coagulation and fibrinolytic factors is a cause of vascular access dysfunction and thrombosis of other vessels.