Leukemic dendritic cells (DCs) that are derived from acute myeloid leukemia (AML) cells display low-level expression of several key molecules. We investigated the optimal combination of cytokines needed to generate potent leukemic DCs from AML cells in vitro. AML cells were cultured in the presence of the following combinations of cytokines: Group A, granulocyte-macrophage colony-stimulating factor (GM-CSF) + interleukin-4 (IL-4) + tumor necrosis factor-alpha (TNF-alpha); Group B, GM-CSF + IL-4 + CD40L; and Group C, CD40L addition at the terminal maturation point of cells that were grown as for Group A. The AML cells showed clear upregulation of CD80, CD83, CD86, CD40, and HLA-DR expression under all culture conditions, without significant differences between these groups. However, the addition of CD40L (as in Group C) showed a slight upregulation in the expression of CD83 and CD86 on leukemic DCs. The leukemic DCs in Groups A and B had higher allogeneic T-cell stimulatory capacities than untreated AML cells, and the addition of CD40L (Group C) enhanced this effect. The function of the cytotoxicity-stimulating autologous T cells was also augmented by the addition of CD40L (Group C). These results suggest that AML cells may be used to generate leukemic DCs using various cytokine combinations, and that the most potent, mature leukemic DCs are generated by the addition of CD40L to terminal-stage AML cultures that are grown in the presence of conventional cytokine combinations.
(c) 2004 Wiley-Liss, Inc.