Deletion or alteration of an avirulence gene are two mechanisms that allow pathogens to escape recognition mediated by the corresponding resistance gene in the host. We studied these two mechanisms for the NIP1 avirulence gene in field populations of the fungal barley pathogen Rhynchosporium secalis. The product of the avirulence gene, NIP1, causes leaf necrosis and elicits a defense response on plants with the Rrs1 resistance gene. A high NIP1 deletion frequency (45%) was found among 614 isolates from different geographic populations on four continents. NIP1 was also sequenced for 196 isolates, to identify DNA polymorphisms and corresponding NIP1 types. Positive diversifying selection was found to act on NIP1. A total of 14 NIP1 types were found, 11 of which had not been described previously. The virulence of the NIP1 types was tested on Rrs1 and rrs1 barley lines. Isolates carrying three of these types were virulent on the Rrs1 cultivar. One type each was found in California, Western Europe, and Jordan. Additionally, a field experiment with one pair of near-isogenic lines was conducted to study the selection pressure imposed by Rrs1 on field populations of R. secalis. Deletion of NIP1 was the only mechanism used to infect the Rrs1 cultivar in the field experiment. In this first comprehensive study on the population genetics of a fungal avirulence gene, virulence to Rrs1 in R. secalis was commonly achieved through deletion of the NIP1 avirulence gene but rarely also through point mutations in NIP1.