The linear interaction energy (LIE) method is combined with energy minimization and finite-difference Poisson calculation of electrostatic solvation for the estimation of the absolute free energy of binding. A predictive accuracy of about 1.0 kcal/mol is obtained for 13 and 29 inhibitors of beta-secretase (BACE) and HIV-1 protease (HIV-1 PR), respectively. The multiplicative coefficients for the van der Waals and electrostatic terms are not transferable between BACE and HIV-1 PR although they are both aspartic proteases. The present approach is about 2 orders of magnitude faster than previous LIE methods and can be used for ranking large libraries of structurally diverse compounds docked by automatic computational tools.