We have characterized a novel peptide-containing cell within the gastric mucosa of Xenopus laevis. The cell is a spherical, multinucleated syncytial structure containing a cytoplasmic space filled with dense rice-shaped granules, and is strikingly similar in morphology to the well-studied granular gland of the amphibian skin. Immunohistochemical and immunogold methods were used to demonstrate that several peptides previously isolated from the granular glands of the skin, including the antimicrobial peptides magainin and PGLa (a peptide with amino-terminal glycine and carboxy-terminal leucinamide), are also stored in granules present in these enteric cells. These data demonstrate that this enteric peptide-producing cell is strikingly similar both morphologically and biochemically to the granular gland, previously considered a highly specialized structure of the amphibian integument. This novel gastric mucosal cell, which we have designated a "granular multinucleated cell," is distinct in its morphology and its diversity of stored peptide products from other well-characterized peptide-containing cells in the vertebrate gastrointestinal tract.