We report atomic-resolution imaging and site-specific quantitative force measurements on a single-walled carbon nanotube by dynamic force microscopy and three-dimensional force field spectroscopy at low temperatures. The topography imaged in the attractive force regime reflects the trigonal arrangement of the hollow sites as maxima. Individual force curves were unambiguously assigned to carbon atoms and hollow sites, respectively. Site-specific quantitative evaluation revealed that the short-range interatomic van der Waals forces are responsible for the atomic-scale contrast.