Despite the generally accepted importance of bifidobacteria as probiotic components of the human intestinal microflora and their use in health promoting foods, there is only limited information about their phylogenetic position, physiology and underlying genetics. In the last few years numerous molecular approaches have emerged for the identification and characterization of bifidobacterial strains. Their use, in conjunction with traditional culturing methods, has led to a polyphasic taxonomy which has significantly enhanced our knowledge of the role played by these bacteria in the human intestinal ecosystem. The recent adaptation of culture-independent molecular tools to the fingerprinting of intestinal and food communities offers an exciting opportunity for revealing a more detailed picture of the true complexity of these environments. Furthermore, the availability of bifidobacterial genome sequences has advanced knowledge on the genetics of bifidobacteria and the effects of their metabolic activities on the intestinal ecosystem. The release of a complete Bifidobacterium longum genome sequence and the recent initiative to sequence additional strains are expected to open up a new era of comparative genomics in bifidobacterial biology. Moreover, the use of genomotyping allows a global comparative analysis of gene content between different bifidobacterial isolates of a given species without the necessity of sequencing many strains. Genomotyping provides useful information about the degree of relatedness among various strains of Bifidobacterium species and consequently can be used in a polyphasic identification approach. This review will deal mainly with the molecular tools described for bifidobacterial identification and the first insights into the underlying genetics involved in bifidobacterial physiology as well as genome variability.