Background and purpose: To analyse the sensitivity of plan optimisation of prostate cancer treatments with respect to changes in the volume parameter (n), when the EUD is used to control the dose in the rectal wall.
Patients and methods: A series of plans was defined, by varying n over a range between 0.08 and 1, and testing different cost functions and beam arrangements. In all cases, the aim was to minimise the EUD in the rectal wall, while ensuring specific dose coverage of the PTV, and limiting the dose in the other OARs. The results were evaluated in terms of 3-D dose distribution and with respect to the current clinical knowledge about late rectal toxicity after irradiation.
Results: Different values of n lead to very similar dose distributions over the PTV (differences in mean dose < 1 Gy, differences in dose given to 99% of the volume < 1%). For the rectal wall, the following observations were made: (a) all cumulative DVH curves crossed each other around 60 Gy; (b) the rectal wall volume receiving doses between 30 and 45 Gy could change by 45 and 30%, respectively, depending on the value of n; (c) for doses higher than 70Gy the differences were typically within 5%. Different values of n also affected the position of isodose surfaces. The distance between the 70 and the 30 Gy isodose curves changed in the AP direction by a factor of 3 when n decreased from 1 to 0.08. High values of n were associated with less dose conformity and a larger volume (at least 20%) of normal tissues receiving 50 Gy or more. All DVHs for the rectal wall were below published dose toxicity thresholds except when the prescribed dose was escalated up to 86 Gy.
Conclusions: In most cases, the solutions associated with n values up to 0.25 produced similar dose distribution in the rectal wall for doses above 45 Gy, complying with the dose-toxicity thresholds we analysed. The choice of a specific value of n in the optimisation requires an analysis of its effects on the dose distribution for the rectal wall, but also on other aspects, such as the value of the dose to the non-involved normal tissues.