Activation of dopamine D1-like receptors induces acute internalization of the renal Na+/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells

Am J Physiol Renal Physiol. 2005 Apr;288(4):F740-7. doi: 10.1152/ajprenal.00380.2004. Epub 2004 Nov 16.

Abstract

The Na(+)/phosphate cotransporter NaPi-IIa (SLC34A1) is the major transporter mediating the reabsorption of P(i) in the proximal tubule. Expression and activity of NaPi-IIa is regulated by several factors, including parathyroid hormone, dopamine, metabolic acidosis, and dietary P(i) intake. Dopamine induces natriuresis and phosphaturia in vivo, and its actions on several Na(+)-transporting systems such as NHE3 and Na(+)-K(+)-ATPase have been investigated in detail. Using freshly isolated mouse kidney slices, perfused proximal tubules, and cultured renal epithelial cells, we examined the acute effects of dopamine on NaPi-IIa expression and localization. Incubation of isolated kidney slices with the selective D(1)-like receptor agonists fenoldopam (10 microM) and SKF-38393 (10 microM) for 1 h induced NaPi-IIa internalization and reduced expression of NaPi-IIa in the brush border membrane (BBM). The D(2)-like selective agonist quinpirole (1 microM) had no effect. The D(1) and D(2) agonists did not affect the renal Na(+)/sulfate cotransporter NaSi in the BBM of the proximal tubule. Studies with isolated perfused proximal tubules demonstrated that activation of luminal, but not basolateral, D(1)-like receptors caused NaPi-IIa internalization. In kidney slices, inhibition of PKC (1 microM chelerythrine) or ERK1/2 (20 microM PD-098089) pathways did not prevent the fenoldopam-induced internalization. Inhibition with the PKA blocker H-89 (10 microM) abolished the effect of fenoldopam. Immunoblot demonstrated a reduction of NaPi-IIa protein in BBMs from kidney slices treated with fenoldopam. Incubation of opossum kidney cells transfected with NaPi-IIa-green fluorescent protein chimera shifted fluorescence from the apical membrane to an intracellular pool. In summary, dopamine induces internalization of NaPi-IIa by activation of luminal D(1)-like receptors, an effect that is mediated by PKA.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Polarity / physiology
  • Cells, Cultured
  • Cyclic AMP-Dependent Protein Kinases / metabolism
  • Dopamine Agonists / pharmacology
  • Down-Regulation
  • Endocytosis / physiology
  • Fenoldopam / pharmacology
  • Kidney Tubules, Proximal / cytology
  • Kidney Tubules, Proximal / metabolism*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Microvilli / metabolism
  • Opossums
  • Organ Culture Techniques
  • Quinpirole / pharmacology
  • Receptors, Dopamine D1 / agonists
  • Receptors, Dopamine D1 / metabolism*
  • Receptors, Dopamine D2 / agonists
  • Receptors, Dopamine D2 / metabolism
  • Sodium-Phosphate Cotransporter Proteins
  • Sodium-Phosphate Cotransporter Proteins, Type IIa
  • Symporters / metabolism*

Substances

  • Dopamine Agonists
  • Receptors, Dopamine D1
  • Receptors, Dopamine D2
  • Slc34a1 protein, mouse
  • Sodium-Phosphate Cotransporter Proteins
  • Sodium-Phosphate Cotransporter Proteins, Type IIa
  • Symporters
  • Quinpirole
  • Cyclic AMP-Dependent Protein Kinases
  • Fenoldopam