Ferrocenyl-modified DNA: synthesis, characterization and integration with semiconductor electrodes

Chemistry. 2004 Dec 17;11(1):344-53. doi: 10.1002/chem.200400632.

Abstract

The ferrocenyl-nucleoside, 5-ethynylferrocenyl-2'-deoxycytidine (1) has been prepared by Pd-catalyzed cross-coupling between ethynylferrocene and 5-iodo-2'-deoxycytidine and incorporated into oligonucleotides by using automated solid-phase synthesis at both silica supports (CPG) and modified single-crystal silicon electrodes. Analysis of DNA oligonucleotides prepared and cleaved from conventional solid supports confirms that the ferrocenyl-nucleoside remains intact during synthesis and deprotection and that the resulting strands may be oxidised and reduced in a chemically reversible manner. Melting curve data show that the ferrocenyl-modified oligonucleotides form duplex structures with native complementary strands. The redox potential of fully solvated ferrocenyl 12-mers, 350 mV versus SCE, was shifted by +40 mV to a more positive potential upon treatment with the complement contrary to the anticipated negative shift based on a simple electrostatic basis. Automated solid-phase methods were also used to synthesise 12-mer ferrocenyl-containing oligonucleotides directly at chemically modified silicon <111> electrodes. Hybridisation to the surface-bound ferrocenyl-DNA caused a shift in the reduction potential of +34 mV to more positive values, indicating that, even when a ferrocenyl nucleoside is contained in a film, the increased density of anions from the phosphate backbone of the complement is still dominated by other factors, for example, the hydrophobic environment of the ferrocene moiety in the duplex or changes in the ferrocene-phosphate distances. The reduction potential is shifted >100 mV after hybridisation when the aqueous electrolyte is replaced by THF/LiClO(4), a solvent of much lower dielectric constant; this is consistent with an explanation based on conformation-induced changes in ferrocene-phosphate distances.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cytidine / analogs & derivatives
  • DNA / chemical synthesis*
  • DNA / chemistry*
  • Electrochemistry
  • Ferrous Compounds*
  • Metallocenes
  • Models, Molecular
  • Oligodeoxyribonucleotides / chemical synthesis
  • Oligodeoxyribonucleotides / chemistry
  • Silicon Dioxide
  • Static Electricity

Substances

  • Ferrous Compounds
  • Metallocenes
  • Oligodeoxyribonucleotides
  • Cytidine
  • Silicon Dioxide
  • DNA
  • ferrocene