The intracellular bacterial pathogen Chlamydia is sequestered from the host cell cytoplasm by remaining within an inclusion body during its replication cycle. Nevertheless, CD8(+) T cells recognizing Chlamydia Ags in the context of MHC class I molecules are primed during infection. We have recently described derivation of Chlamydia-specific human CD8(+) T cells by using infected dendritic cells as a surrogate system to reflect Chlamydia-specific CD8(+) T cell responses in vivo. These CD8(+) T cell clones recognize chlamydial Ags processed via the conventional class Ia processing pathway, as assessed by treatment of infected APC with lactacystin and brefeldin A, suggesting that the Ags are translocated from the chlamydial inclusion into the host cell cytosol. In this study, outer membrane protein 2 (OmcB) was identified as the Ag recognized by one of these Chlamydia-specific human CD8(+) T cells, and we defined the HLA*A0101-restricted epitope from this Ag. CD8(+) T cell responses to this epitope were present at high frequencies in the peripheral blood of both of two HLA*A0101 donors tested. In vitro chlamydial growth was completely inhibited by the OmcB-specific CD8(+) T cell clone independently of lytic mechanisms. OmcB is a 60-kDa protein that has been postulated to be associated with the Chlamydia outer membrane complex. The subcellular localization of OmcB to the cytosol of infected cells, as determined by conventional MHC class I Ag processing and presentation, suggests the possibility of an additional, cytosolic-associated function for this protein.