Repeated cocaine administration increases membrane excitability of pyramidal neurons in the rat medial prefrontal cortex

J Pharmacol Exp Ther. 2005 Mar;312(3):1305-13. doi: 10.1124/jpet.104.075184. Epub 2004 Dec 1.

Abstract

Although the medial prefrontal cortex (mPFC) plays a critical role in cocaine addiction, the effects of chronic cocaine on mPFC neurons remain poorly understood. Here, we performed visualized current-clamp recordings to determine the effects of repeated cocaine administration on the membrane excitability of mPFC pyramidal neurons in rat brain slices. Following repeated cocaine administration (15 mg/kg/day i.p. for 5 days) with a 3-day withdrawal, alterations in membrane properties, including increased input resistance, reduced intensity of intracellular injected currents required for generation of Na(+)-dependent spikes (rheobase), and an increased number of spikes evoked by depolarizing current pulses were observed in mPFC neurons. The current-voltage relationship was also altered in cocaine-pretreated neurons showing reduced outward rectification during membrane depolarization and decreased inward rectification during membrane hyperpolarization. Application of the K(+) channel blocker Ba(2+) depolarized the resting membrane potential (RMP) and enhanced membrane potential response to injection of hyperpolarizing current pulses. However, the effects of Ba(2+) on RMP and hyperpolarized membrane potentials were significantly attenuated in cocaine-withdrawn neurons compared with saline-pretreated cells. These findings indicate that repeated cocaine administration increased the excitability of mPFC neurons after a short-term withdrawal, possibly via reducing the activity of the potassium inward rectifiers (K(ir)) and voltage-gated K(+) currents. Similar changes were also observed in cocaine-pretreated mPFC neurons after a long-term (2-3 weeks) withdrawal, revealing a persistent increase in excitability. These alterations in mPFC neuronal excitability may contribute to the development of behavioral sensitization and withdrawal effects following chronic cocaine exposure.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Action Potentials / drug effects
  • Animals
  • Barium / pharmacology
  • Cocaine / pharmacology*
  • Evoked Potentials / drug effects
  • Male
  • Membrane Potentials / drug effects
  • Potassium Channels, Voltage-Gated / drug effects
  • Prefrontal Cortex / drug effects*
  • Prefrontal Cortex / physiology
  • Pyramidal Cells / drug effects*
  • Pyramidal Cells / physiology
  • Rats
  • Rats, Sprague-Dawley

Substances

  • Potassium Channels, Voltage-Gated
  • Barium
  • Cocaine