Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells

Stem Cells. 2004;22(7):1263-78. doi: 10.1634/stemcells.2004-0024.

Abstract

Mesenchymal stem cells (MSCs) give origin to the marrow stromal environment that supports hematopoiesis. These cells present a wide range of differentiation potentials and a complex relationship with hematopoietic stem cells (HSCs) and endothelial cells. In addition to bone marrow (BM), MSCs can be obtained from other sites in the adult or the fetus. We isolate MSCs from the umbilical cord (UC) veins that are morphologically and immunophenotpically similar to MSCs obtained from the BM. In culture, these cells are capable of differentiating in vitro into adipocytes, osteoblasts, and condrocytes. The gene expression profiles of BM-MSCs and of UC-MSCs were compared by serial analysis of gene expression, then validated by reverse transcription polymerase chain reaction of selected genes. The two lineages shared almost all of the first thousand most expressed transcripts, including vimentin, galectin 1, osteonectin, collagens, transgelins, annexin A2, and MMP2. Nevertheless, a set of genes related to antimicrobial activity and to osteogenesis was more expressed in BM-MSCs, whereas higher expression in UC-MSCs was observed for genes that participate in pathways related to matrix remodeling via metalloproteinases and angiogenesis. Finally, cultured endothelial cells, CD34+ HSCs, MSCs, blood leukocytes, and bulk BM clustered together, separated from seven other normal nonhematopoietic tissues, on the basis of shared expressed genes. MSCs isolated from UC veins are functionally similar to BM-MSCs, but differentially expressed genes may reflect differences related to their sites of origin: BM-MSCs would be more committed to osteogenesis, whereas UC-MSCs would be more committed to angiogenesis.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenoviridae / genetics*
  • Adipocytes / metabolism
  • Bone Marrow Cells / cytology*
  • Cell Lineage
  • Cells, Cultured
  • Chondrocytes / metabolism
  • Cluster Analysis
  • DNA, Complementary / metabolism
  • Endothelium, Vascular / cytology*
  • Flow Cytometry
  • Gene Expression
  • Gene Expression Regulation*
  • Genetic Vectors
  • Hematopoiesis
  • Humans
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / metabolism
  • Neovascularization, Physiologic
  • Osteoblasts / metabolism
  • Phylogeny
  • RNA, Messenger / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Umbilical Cord / cytology
  • Umbilical Veins / cytology*
  • Umbilical Veins / metabolism

Substances

  • DNA, Complementary
  • RNA, Messenger