Structural and magnetic investigations of the mixed-valence Fe(II,III) two-dimensional layer complex, [Fe2(II) Fe2(III)(HCOO)10(C6H7N)6]n

Chemphyschem. 2004 Nov 12;5(11):1755-61. doi: 10.1002/cphc.200400027.

Abstract

The structure of the complex, [Fe2(II)Fe2(III)(HCOO)10(C6H7N6)n, (1) exhibits a neutral two-dimensional layer network of alternating iron(II) and iron(III) ions, bridged equatorially by formate groups. All iron atoms are octahedrally coordinated, with iron(III) coordinating axially to one gamma-picoline and one formate group, while the iron(II) centers interact axially with two gamma-picoline groups, above and below the layer plane. The complex crystallizes in the triclinic space group P1 at all studied temperatures [at 120 K, the cell dimensions are: a = 10.228(1), b = 12.071(1), c = 12.072(1) A, alpha = 89.801(2), beta = 71.149(2), gamma = 73.371(2) degrees]. An intralayer antiferromagnetic exchange interaction of J = -2.8 cm(-1) between iron(II) and iron(III) was observed in the magnetic studies. Decreasing the temperature to close to 20 K causes a magnetic-ordering phenomenon to occur and a low-temperature phase with a long-range antiferromagnetic spin orientation appears. The magnetic phase transition was confirmed by Mössbauer spectroscopic studies at temperatures above and below the critical temperature. Structural information of 1 from synchrotron X-ray diffraction data collected at room temperature and 16 K suggests that the antiferromagnetic ordering is caused by an enhanced pi-pi interaction between chi-picoline groups from adjacent layers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crystallography, X-Ray
  • Ferric Compounds / chemistry*
  • Ferrous Compounds / chemistry*
  • Magnetics*
  • Models, Molecular
  • Organometallic Compounds / chemistry*
  • Spectroscopy, Mossbauer
  • Temperature

Substances

  • Ferric Compounds
  • Ferrous Compounds
  • Organometallic Compounds