Ionic liquid ion sources: characterization of externally wetted emitters

J Colloid Interface Sci. 2005 Feb 15;282(2):415-21. doi: 10.1016/j.jcis.2004.08.132.

Abstract

The feasibility of electrostatically extracting and accelerating ions from room temperature ionic liquids in a high vacuum environment is investigated using externally wetted emitters similar to those manufactured for liquid metal ion sources, made out of tungsten wire and electrochemically treated to produce a sharp tip and to increase surface wettability. The ionic liquid EMI-BF4 is used as a prototypical example. The temperature dependence on emission current suggests that liquid flow over the metallic surface is limited by viscosity. Time-of-flight spectrometry indicates that the beam is composed of EMI+ and (EMI-BF4)EMI+ ions in the positive polarity and BF4- and (EMI-BF4)BF4- ions in the negative polarity, and that these ions are emitted with energies very close to their applied potentials. Angular distribution measurements in positive and negative polarities show that ions travel near the propagation axis, diverging by not more than 18 degrees from the centerline. Thanks to the extraordinary variety of ionic liquids it should be possible to generate a correspondingly large number of bipolar nonmetallic ion beams each with unique properties and applicability in fields as diverse as ion lithography, analytical equipment and space propulsion.